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Abstract Brain tumor is an abnormal cell population that 
occurs in the brain. Currently, medical imaging techniques 
play a vital role in brain tumor diagnosis and classification. 
Brain tumor classification based on Magnetic Resonance 
Imaging (MRI) has become a promising research area in 
the field of medical imaging systems. In the brain image, the 
size of the tumor may vary from patient to patient along with 
the minute details of the tumor. It is a difficult task for radi-
ologists to diagnose and classify tumors from numerous 
images. An efficient algorithm is proposed in this paper for 
tumor classification based on Deep Learning (DL) models. 
This paper presents three different Convolutional Neural 

Network (CNN) models for classification of brain tumors. 
These models are AlexNet, VGG16, and ResNet50. As brain 
images need to be stored for a along time for research and 
medical causes, image compression is an efficient tool for 
minimizing storage space, and also for allowing the deep 
analysis of brain images. This study depends on a lossy 
compression method, namely JPEG2000, for the storage of 
medical brain images. Classification is applied on the data-
set with and without compression to estimate the effect of 
the  compression method on the classification performance. 
Results of the classification models show that ResNet50 
achieves a 99.97% accuracy, then VGG16 reaches a 98.83% 
accuracy, and finally, AlexNet gives a 92.92% accuracy 
without compression. The compression process is applied 
with four different compression ratios of 50, 25, 12.5, and 
10%. The reduction in accuracy of classification with com-
pression is small, as ResNet50 gives a 98.56% accuracy, 
and VGG16 gives a 92.92% accuracy, while AlexNet gives 
an 83.83% accuracy.

Keywords Brain tumor · MRI · Deep Learning (DL) · 
AlexNet · VGG16 · ResNet50 · Image compression

Introduction

A brain tumor is produced by a partly-developed irregular-
ity in the brain or principal spine, and it disrupts the nor-
mal brain job. Brain tumors can be divided into two kinds: 
benign and malignant. Benign brain tumors do not include 
cancer cells, and they develop slowly. They do not extend 
and typically stay in a unique portion of the brain, but malig-
nant brain tumors include cancer cells and develop fast. 
They diffuse to additional parts of the brain and spine [1].
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A malignant tumor is both dangerous and   fatal. The 
World Health Organization (WHO) has classified brain can-
cers as grade 1 and 2 low-grade tumors (also recognized as 
benign tumors) and grade 3 and 4 high-grade tumors (com-
monly known as malignant tumors) based on brain health 
behavior [2].

Abnormal and uncontrolled synapses represent a feature 
of brain tumors that can grow in the skull. These tumors 
put strain on the brain and have a negative effect on the 
person’s health. According to data from the National 
Brain Tumor Foundation (NBTF), the death rate from 
brain tumors has risen by approximately 200% in various 
countries [3–5]. Early identification and categorization of 
cancers are critical tasks in biomedical imaging research, 
since they aid in the development of therapeutic strategies 
that improve patient survival [6].

Several methods are used to identify brain tumors, 
including CT scans and EEG signals, but the most power-
ful and extensively-used method is MRI. It generates inte-
rior images of body organs using intense and accurate 
magnetic fields and radio waves. It is more successful than 
CT and EEG scanning, because it offers more compre-
hensive information about the organs inside the body [6].

Significant advancements in medical science have been 
made in recent years as a result of Artificial Intelligence 
(AI) and DL. The developed techniques allow specialists 
to identify diseases simply. This task was previously tedi-
ous and time-consuming.

The manual approach for diagnosis is time-consuming 
and might lead to human mistakes due to the large volumes 
of data and the different forms of brain tumors. As a con-
sequence, a Computer-Assisted Diagnostic (CAD) system 
is needed. Deep Convolutional Neural Networks (CNNs), 
which have been proposed in that field, have made a sig-
nificant progress in image classification algorithms in 
recent years [7].

Tumor detection can be considered as one of the most 
important and crucial aspects in determining the kind of 
treatment, the treatment process, the treatment success 
level,  and the required follow-up. The CNNs represent one 
of the best significant and applicable types of DL models 
in addition to feed-forward neural networks in the field of 
visual image analysis [8].

Image compression is a strategy for minimizing the 
irrelevancy and redundancy in medical images. It reduces 
the dimensions of the image folder without sacrificing 
quality [9]. More images may be saved on a certain amount 
of disk space with this compression. It similarly speeds up 
the transmission of images over the Internet by lowering 
the transmission time. There are two forms of image com-
pression: lossy and lossless. Lossless compression aims at 
the preservation of image quality in Picture Archiving and 
Communication System (PACS), and it helps in closely 

matching of innovative images after medical image res-
toration. Lossy compression introduces artifacts, and it is 
implemented with very low bit rates. Because the super-
fluous information is totally deleted, the image suffers 
from some deterioration after reconstruction. Although 
lossy compression is visually lossless under typical view-
ing conditions, it allows greater compression ratios com-
pared to lossless compression [10].

The main contributions of this paper are summarized as 
follows: 

 (i) Three CNNs are tested to classify medical images 
(AlexNet, VGG16, ResNet50).

 (ii) A lossy compression method is applied on the brain 
images.

 (iii) Compression is applied with four different compres-
sion ratios.

 (iv) Classification is performed with 3 models after 
the compression process.

 (v) High compression ratios and better performance are 
achieved after classification.

 (vi) The proposed approach provides good results for real-
time medical datasets.

Related work

Artificial Intelligence (AI) and DL are largely employed in 
image processing methods for segmenting, identifying, and 
classifying magnetic resonance images. The objective is 
classifying and detecting brain tumors. There have been sev-
eral studies on brain tumor detection and classification [1].

Several studies discussed brain tumor recognition with 
DL. Sheikh Basheera et  al. [11] suggested a technique 
for diagnosing brain cancer in which the tumor is first 
segmented from a magnetic resonance image. Then, it is 
removed using a stochastic gradient descent algorithm by 
a pre-trained CNN. Muhammad Sajjad et al. [12] proposed 
classifying multi-grade cancer tumors by using a data aug-
mentation approach on magnetic resonance images, and then 
refining them using VGG-19 model that has already been 
trained.

Ahmet Inar et al. [13] compared the accuracy of the pre-
trained ResNet50 model with those of other pre-trained 
models like GoogleNet, AlexNet, and ResNet50 by eliminat-
ing the final 5 layers and replacing them with 8 new layers. 
The improved ResNet50 model produced good results, with 
a 97.2 % accuracy.

Jun Cheng et al. [14] devised a tumor categorization 
approach, which has two stages: offline database construc-
tion and online retrieval. Brain tumor images are analyzed 
sequentially in the offline database phase. Tumor segmenta-
tion, feature extraction, and distance metric learning are the 
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steps adopted. The input brain images are handled in online 
learning in a similar manner, and the extracted features are 
compared according to distance metrics. Although this way 
does not employ a neural network, it has a classification 
accuracy of 94.68%.

In recent years, several classification and segmentation 
approaches have been proposed. Old machine learning 
[15–18] and new DL models [19–39] have been applied in 
these strategies. Hemanth et al. [35] presented an approach 
for MRI brain tumor classification that depends on a modi-
fied neural network. To test this approach, 540 magnetic 
resonance brain images were used. The dataset includes 
four types of tumors: astrocytoma, meningioma, metas-
tasis, and glioma. The utilized images have 256 × 256 
pixels in size. As a pre-processing step, normalization is 
carried out. The first-order histogram and Gray-Level Co-
occurrence Matrix (GLCM) are used to give eight fea-
tures. This approach produced encouraging results with a 
sensitivity of 95%, a specificity of 98%, and an accuracy 
of 98%. Mzoughi et al. (2020) presented a deep multi-
scale 3D CNN model for grading of brain tumors from 
volumetric 3D MRI data. This model correctly classi-
fied brain tumor images as high-grade glioma and low-
grade glioma with a 96.49% accuracy. For brain tumor 
classification, Ayadi et al. (2021) proposed a CNN-based 
Computer-Assisted Diagnosis (CAD) system. Experiments 

employing the 18-weighted layered CNN model on three 
different datasets produced a 94.74% classification accu-
racy for brain tumor category classification and a 90.35% 
classification accuracy for tumor grading. For brain tumor 
classification, many researchers used pre-trained CNN 
models with a transfer learning technique. For example, 
Cinar and Yildirim (2020) employed a modified form of 
the pre-trained ResNet50 CNN model for brain tumor 
detection, replacing the latest 5 layers with 8 additional 
layers. With this improved CNN model, they were able to 
obtain a 97.2% accuracy on MRI scans. Khan et al. (2020) 
used 253 real brain MRI scans with data augmentation 
to introduce a DL model for classifying brain tumors as 
cancerous or non-cancerous. They employed edge detec-
tion to localize the area of interest in magnetic resonance 
images before using a basic CNN model to extract the 
characteristics. They were able to correctly classify 89% 
of the images [36].

To obtain a high compression ratio, Sevak et al. (2012) 
employed compressive sensing methods and wavelet coef-
ficients as features to compress medical CT images. The 
authors obtained a Peak Signal-to-Noise Ratio (PSNR) of 
25 dB and a Root Mean Square Error (RMSE) of 14.5 dB 
[10].

Fig. 1  Proposed classification 
and compression method segamIdeifissalCsegamIniarBtupnI

Lossy 
JPEG2000 

Compression 

CNN 
Classifica�on 

Fig. 2  AlexNet architecture
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Proposed compression and classification approach

The general diagram of the proposed compression and clas-
sification approach is revealed in Fig. 1. We classify brain 
images into two classes with tumor and without tumor after 
the compression process. The detailed steps of the proposed 
approach include:

1. The original brain images are classified with three dif-
ferent CNN models: AlexNet, VGG16, and ResNet50 
into dual classes containing tumors or not.

2. The same original brain images are compressed by lossy 
compression using JPEG2000 technique at compression 
ratios of 50, 25, 12.5 and 10%.

3. All compressed images at four different compression 
ratios are classified again using the same previous CNN 
models.

4. A comparison is made between results of classification 
with and without compression.

5. Results from the comparison reveal the low effect of 
compression on classification results.

The suggested approach is applied on a dataset of MRI 
brain tumor images from Kaggle. It consists of two classes 
of images including tumor, or not. Images are of different 
dimensions. The first class contains 5504 images for brain 
with tumors, and the second class contains 6159 images for 
brain without tumors. All these images from both categories 
have been used to test the classification with and without 
compression. The data is available at the link: https:// www. 
kaggle. com/ leade randp iller/ brain- tumor- segme ntati on

Fig. 3  VGG16 architecture

Fig. 4  ResNet50 architecture

https://www.kaggle.com/leaderandpiller/brain-tumor-segmentation
https://www.kaggle.com/leaderandpiller/brain-tumor-segmentation
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Utilized CNN models

• AlexNet model
• VGG16 model
• ResNet50 model

AlexNet model

AlexNet includes 8 layers: 5 convolutional layers, 2 fully-
connected layers, and a fully-connected output layer. The 
size of the input image is 227 × 227. The first convolu-
tional layer employs 96 filters of 11 × 11 window size. In 
the second convolutional layer, 256 filters are used with a 
reduced window size of 5 × 5. The window size is 3 × 3 
with 384, 384 and 256 filters, in the third, fourth and fifth 
layers, respectively. The first, second and fifth layers are fol-
lowed by 3 × 3 max-pooling layers with a stride of 2. Each 
fully-connected layer has 4096 neurons. Softmax–based 
classification is employed with 1000 outputs correspond-
ing to the 1000 classes of ImageNet. The network structure 
is s shown in Fig. 2. Convolutional filters and a nonlinear 
activation function called ReLU are used in each convo-
lutional layer. To implement feature reduction, the max-
pooling layers are needed. Owing to the presence of fully-
connected layers, the input size is fixed. The input size is 
224 × 224 × 3 in most places; however, owing to padding, 
it is actually 227 × 227 × 3. AlexNet contains a total of 60 
million parameters.

Model Specifications.
The winning model was fine-tuned to include the follow-

ing features:

• ReLU is used as an activation function.
• Normalization layers are used.
• A 128-piece batch is used.
• The Stochastic Gradient Descent (SGD) momentum 

algorithm is used as a learning algorithm.
• Extensive data augmentation  is adopted with tools 

including flipping, jittering, cropping, color correction, 
and other techniques.

• Model assembly is used to achieve the best outcomes.

Max-pooling is used to downsample an image or a rep-
resentation. The feature map dimensions are reduced by 
enabling assumptions to be made about the characteristics 
included in the binned sub-regions.

Overlapping max-pooling layers resemble max-pooling 
layers, with the exception that the neighboring windows over 
which the maximum is determined overlap.

The overlapping max-pooling layers, which we will 
discuss next, come after the first two convolutional layers. 
Direct connections exist among the third, fourth, and fifth 

convolutional layers. The second fully-connected layer sends 
1000 class labels into a softmax classifier [34].

After all convolutional and fully-connected layers, ReLU 
nonlinearity is applied. Before pooling, the first and second 
convolutional layers’ ReLU nonlinearity is tailed by a local 
normalizing step [37].

• VGG16 model
  The VGG16 model includes 16 layers as shown in 

Fig. 3. Starting by five blocks of convolutional layers, the 
VGG16 architecture is charted by three fully-connected 
layers. To guarantee that every activation map keeps the 
identical spatial sizes as that of the preceding layer, con-
volutional layers have 3 × 3 kernels with a step of 1 and 
a packing of 1. In order to minimize the spatial dimen-
sions, a ReLU activation is used after every convolution, 
and a max-pooling process is used at the conclusion of 
all blocks. On the way to ensure that each spatial size 
of the activation map from the earlier layer is split to 
half, max-pooling layers have 2 × 2 kernels with a stride 
of 2 and no padding. Before the final 1000-unit fully-
connected softmax layer, dual fully-connected layers with 
4096 ReLU units are employed [43]. The VGG16 model 
has the disadvantage of being costly [38].

• ResNet50 model
  We suggest using ResNet50 (residual CNN with 50 

layers) to classify brain images in order to aid in the early 
detection of tumors. In this regard, we use the transfer 
learning approach to fine-tune the network parameters 
and hyperparameters of the powerful ResNet50 CNN 
[39].

  This is performed by preprocessing of the obtained 
dataset (brain tumor images) and generating a ResNet50 
model with pre-determined parameters. MATLAB is 
used to do this task. Figure 4 shows an illustration of 
this module [39].

• Convolution through a kernel size of 7 × 7 and 64 differ-
ent kernels, each having a stride size of 2, is used within 
the first layer.

• After that, we have max-pooling with a stride size of 2.
• The following convolution has a 1 × 1 size, with 64 ker-

nels, then a 3 × 3 size with 64 kernels, and finally a 1 × 
1 size with 256 kernels. These three layers are repeated 
three times, providing nine layers in this stage.

• Subsequently,  there are 128 kernels of size 1 × 1, fol-
lowed by 128 kernels of size 3 × 3, and finally 512 
kernels of size 1 × 1. This phase is performed in four 
epochs, leading to 12 layers.

• After that, 256 kernels of size 1 × 1 are used, followed 
by 256 kernels of size 3 × 3 and 1024 kernels of size 1 × 
1, leading to 18 layers.
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• After that, 512 kernels of size 1 × 1 are added, followed 
by two additional layers with 512 kernels of size 3 × 3  
and 2048 kernels of size 1 × 1, leading to nine layers.

• Then, we conduct an average pooling and finish with a 
fully-conneted layer with 1000 nodes and a softmax func-
tion.

 Image compression

Brain images with and without tumors can be compressed 
with lossless or lossy compression. The utilized lossy com-
pression techniques achieve high compression ratios.

• Lossy Compression: Lossy compression can be used 
to obtain high compression ratios and allow progres-
sive transmission of different types of images. One of 
the most important features of such techniques is that as 
more data is supplied, the overall image quality improves 
steadily.

  Many image compression standards, like JPEG and 
JPEG2000, have emerged as a result of the development 
of other compression techniques. They are now widely 
utilized in several consumer applications. The introduc-
tion of compression algorithms based on the wavelet 
transform followed by bit plane coding, of which Embed-
ded Zero-trees Wavelet (EZW) [40] and Set Partitioning 
In Hierarchical Trees (SPIHT) [41, 42] are two notewor-
thy examples, revolutionized the area of still image com-
pression in the mid-90 s.

• SPIHT
  An algorithm that benefits from the Discrete Wavelet 

Transform (DWT) is the SPIHT [41]. The SPIHT effi-
cacy stems from its ability of subset subdivision and 

allowance of compact forms of meaning information. 
Initialization, organizing pass in a List of Insignificant 
Points (LIP), sorting pass in a List of Insignificant Sets 
(LIS), and refining pass are the four phases of the SPIHT 
algorithm. The algorithm first sets the List of Signifi-
cant Points (LSP) to empty in the initialization stage, 
and then establishes the roots of similarity trees in the 
LIP and LIS. The sign bits of the significant coefficients 
are encoded after every coefficient in the LIP is exam-
ined, and the significant coefficients are shifted to the 
LSP. After that, if an LIS entry is important, a one is 
transmitted, and its two offspring are verified as if they 
were LIP entries. A zero is supplied if an LIS entry is 
unimportant. As a final point, each old LSP entrance is 
double-checked. A one is sent if it is significantly beneath 
an existing threshold, and the magnitude is lowered by 
the present threshold. A zero is sent if the value is unim-
portant. The original reference [41] has further informa-
tion about the SPIHT algorithm.

  Two SPIHT compression variants have been presented 
in [42]. Firstly, a 3-D transform is applied, followed by 
a basic 3-D SPIHT algorithm. After that, spectral vec-
tors of pixels are vector quantized after a spatial wavelet 
transform, and a gain-driven SPIHT is utilized.

  Karhunen–Loève Transform (KLT) is utilized to 
decorrelate the data in the spectral domain [43], and then, 
a 2-D DCT is used to decorrelate the data in the spatial 
domain.

• JPEG2000
  The discrete transform is initially applied on the raw 

image data at the encoder in the JPEG2000 compres-
sion engine. Before creating the output bit stream, the 

Fig. 5  Block diagram of 
JPEG2000
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transform coefficients are quantized and entropy coded. 
To obtain the reconstructed image data, firstly, the 
code stream is entropy decoded, and then dequantized. 
After that, it is inverse discrete transformed [44]. The 
JPEG2000 compression engine is depicted as illustrated 
in the block diagram of Fig. 5.

  The irreversible 9/7 and the reversible 5/3 wavelet 
transformations have been adopted in JPEG2000. The 
Cohen–Daubechies–Feauveau 9/7 filter was utilized for 
spatial decorrelation [41]. As spectral decorrelators, 
DWT and Principal Component Analysis (PCA) are fre-
quently utilized [42].

Table 1  Confusion matrix

Name Positive expected Negative 
expected

Positive in nature (1) (Tp s) (Fn s)
Negative in nature (0) (Fps) (Tns)

Fig. 6  Accuracy and loss over 
the number of iterations of 
AlexNet model

Fig. 7  ROC curve of AlexNet model
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  Quantization is applied to all coefficients after trans-
formation. This is the process of converting the DWT 
coefficients into indices to be encoded. The coefficients 
of each modified tile sub-band are grouped into some rec-
tangular blocks, which are named as code blocks. They 
are coded one bit plane per a time in the last phase of the 
encoding process. Every bit plane is managed in three 
passes. The most significant bit plane has a non-zero ele-
ment [45].

  The outputs are coded by arithmetic methods and com-
bined with comparable passes through other code blocks. 
The brain images are compressed using JPEG2000 with 
the PCA spectral decorrelator and the 2-D DWT spatial 
decorrelator. The authors of [43] implemented JPEG2000 
with PCA as a spectral decorrelator.

• Performance Metrics
  The confusion matrix contains the different evalua-

tion shown in Table 1. True positive (Tp) refers to the 
Fig. 8  True classification versus predicted expectation of AlexNet 
model

Fig. 9  Percentage accuracy and 
loss per iteration for VGG16 
model
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sum of accurately detected abnormal cases [46]. True 
negative represents the recognized number of accu-
rately detected normal cases (Tn). The normal instances 
categorized as abnormal diagnoses are referred to as 
the false positive (Fp). Anomalies that represent the 
false negative (Fn) are the ones that are observed as 
normal [47]. The following metrics are used to assess 
each DL classifier performance. Sensitivity is denoted 
by (Sen), specificity is identified as (Spec), accuracy 
is represented as (ACC ), precision is referred to as 
(Preci),  Matthew’s Correlation Coefficient is referred 
to as (MCC). and False Positive Rate is referred to as 
(FPR). In addition, error, kappa, and F1_score are also 
used.

Sensitivity is given as follows:

Specificity is determined as:

Accuracy is given as:

Precision is given as:

Misclassification rate is well-defined as the number of 
incorrectly categorized labels divided by the number of test 
images [48]:

(1)Sen = Tp∕(Fn + Tp)

(2)Spec =
Tn

Fp + Tn

(3)ACC(%) =
(Tp + Tn)

((Tp + Tn) + (Fp + Fn))
× 100

(4)Preci =
Tp

Fp + Tp

The false positive rate is specified by:

Prevalence represents how often the yes state happens in 
the example.

(5)MCC =
Tn⋅Tp − Fn⋅Fp

√

(

Tp + Fp

)

(Tp + Fn)(Tn + Fp)(Tn + Fn)

(6)FPR =
Fp

Fp + Tn

Table 2  Results of classification before compression

Model AlexNet VGG16 Resnet50

Accuracy (%) 0.9292 0.9883 0.9978
Error (%) 0.0708 0.0117 0.0022
Sensitivity (%) 0.9472 0.9883 0.9989
Specificity (%) 0.9111 0.9883 0.9967
Precision (%) 0.9142 0.9883 0.9967
False Positive Rate (%) 0.0889 0.0117 0.0033
F1_score (%) 0.9304 0.9883 0.9978
Matthew’s Correlation 

Coefficient (%)
0.8589 0.9767 0.9956

Kappa (%) 0.8583 0.9767 0.9956

Fig. 10  ROC curve of VGG16 model

Fig. 11  True classification versus predicted expectation of VGG16 
model
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The F_score, often known as the F_measure, is a meas-
urement of the test accuracy. It is computed by dividing 
the number of true positives by the total number of positive 
results (including those that were mistakenly recognized). 
The recall is the number of genuine positive outputs divided 

(7)Prev =
Fn + Tp

(Tp + Tn) + (Fp + Fn)

Fig. 12  Accuracy and loss per 
iteration for ResNet50 model

Fig. 13  ROC curve of ResNet50

Fig. 14  True classification versus predicted expectation of ResNet50
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by the overall number of samples that have been detected 
as being positive. The F1_score can be calculated using the 
harmonic mean of accuracy in addition to the recall [49].

Simulation results

The AlexNet is applied on the brain tumor images of the 
used datasets.

The results of classification are given in Figs. 6, 7, and 8. 
In addition, the VGG16 model results are given in Figs. 9, 
10, and 11. Moreover, the ResNet50 results are given in 
Figs. 12, 13, and 14. Finally, the comparison results of the 
three models are shown in Table 2.

• Results of classification after compression:

        To certify the success of the suggested algorithm, we 
test it on the offered dataset images. The basic goal of this 
proposal is the compression and classification of brain images 
using lossy compression. The Compression Ratio (CR) is a 
significant parameter to assess the proposed algorithm. It is 
estimated based on the compressed image and the original 
image, and it is defined as the ratio of the size of the com-
pressed image and the size of the source brain image. Tables 3, 
4, and 5 show the results of classification of the three models 
after compression.  

Conclusion

In this paper, a brain tumor classification system using 
CNNs has been introduced to work on compressed 
images. Three different CNNs models  are utilized for 
image classification to decide if the brain image contains 
a tumor or not.  These models are AlexNet, VGG16, and 
ResNet50.  After compression is done, the images are 
classified again o investigate the effect of compression 
on the classification process. ResNet50 has the best effi-
ciency with a 99.78% accuracy. VGG16 comes after with a 
98.83% accuracy. AlexNet achieves the lowest accuracy of 
92.92%. Compression with ratios  of 50, 25, 12.5, and 10% 
leads to minor effects on the accuracy of classification. On 
the other hand, image compression is badly needed for 
minimizing storage space of medical images. The issue 
that needs to be preserved even with compression is the 
high ability to analyze and classify medical images. Obvi-
ously, from the results, it is clear that the ResNet50 model 
gives the best accuracy with and without compression.
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Table 3  Results for AlexNet after compression with different CRs

Compression ratio 2 4 8 10

Accuracy (%) 0.8322 0.8247 0.8228 0.8367
Error (%) 0.1678 0.1753 0.1772 0.1633
Sensitivity (%) 0.8567 0.7872 0.8233 0.8544
Specificity (%) 0.8078 0.8622 0.8222 0.8189
Precision (%) 0.8167 0.8511 0.8224 0.8251
False Positive Rate (%) 0.1922 0.1378 0.1778 0.1811
F1_score (%) 0.8362 0.8179 0.8229 0.8395
Matthew’s Correlation 

Coefficient (%)
0.6652 0.6513 0.6456 0.6738

Kappa (%) 0.6644 0.6494 0.6456 0.6733

Table 4  Results for VGG16 after compression with different CRs

Compression ratio 2 4 8 10

Accuracy (%) 0.9292 0.8964 0.9275 0.9275
Error (%) 0.0708 0.1036 0.0725 0.0725
Sensitivity (%) 0.9472 0.8961 0.9461 0.9444
Specificity (%) 0.9111 0.8967 0.9089 0.9106
Precision (%) 0.9142 0.8966 0.9122 0.9135
False Positive Rate (%) 0.0889 0.1033 0.0911 0.0894
F1_score (%) 0.9304 0.8964 0.9288 0.9287
Matthew’s Correlation 

Coefficient (%)
0.8589 0.7928 0.8556 0.8555

Kappa (%) 0.8583 0.7928 0.8550 0.8550

Table 5  Results for ResNet50 after compression with different CRs

Compression ratio 2 4 8 10

Accuracy (%) 0.9856 0.9853 0.9750 0.9828
Error (%) 0.0144 0.0147 0.0250 0.0172
Sensitivity (%) 0.9917 0.9944 0.9783 0.9839
Specificity (%) 0.9794 0.9761 0.9717 0.9817
Precision (%) 0.9797 0.9765 0.9719 0.9817
False Positive Rate (%) 0.0206 0.0239 0.0283 0.0183
F1_score (%) 0.9856 0.9854 0.9751 0.9828
Matthew’s Correlation 

Coefficient (%)
0.9712 0.9707 0.9500 0.9656

Kappa (%) 0.9711 0.9706 0.9500 0.9656
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